Text about engine

nciple behind production of mechanical force by the interactions of an electric current and a magnetic field, Amp?re's force law, was discovered later by André-Marie Amp?re in 1820. The conversion of electrical energy into mechani

Text about engine oil for Volkswagen

Historical facts about electric motor

Perhaps the first electric motors were simple electrostatic devices created by the Scottish monk Andrew Gordon in the 1740s.2 The theoretical principle behind production of mechanical force by the interactions of an electric current and a magnetic field, Amp?re's force law, was discovered later by André-Marie Amp?re in 1820. The conversion of electrical energy into mechanical energy by electromagnetic means was demonstrated by the British scientist Michael Faraday in 1821. A free-hanging wire was dipped into a pool of mercury, on which a permanent magnet (PM) was placed. When a current was passed through the wire, the wire rotated around the magnet, showing that the current gave rise to a close circular magnetic field around the wire.3 This motor is often demonstrated in physics experiments, brine substituting for toxic mercury. Though Barlow's wheel was an early refinement to this Faraday demonstration, these and similar homopolar motors were to remain unsuited to practical application until late in the century.


Jedlik's "electromagnetic self-rotor", 1827 (Museum of Applied Arts, Budapest). The historic motor still works perfectly today.4
In 1827, Hungarian physicist Ányos Jedlik started experimenting with electromagnetic coils. After Jedlik solved the technical problems of the continuous rotation with the invention of the commutator, he called his early devices "electromagnetic self-rotors". Although they were used only for instructional purposes, in 1828 Jedlik demonstrated the first device to contain the three main components of practical DC motors: the stator, rotor and commutator. The device employed no permanent magnets, as the magnetic fields of both the stationary and revolving components were produced solely by the currents flowing through their windings

Źródło: https://en.wikipedia.org/wiki/Electric_motor


Autonomous car - Wikipedia facts:

Fully autonomous vehicles, also known as driverless cars, already exist in prototype (such as the Google driverless car), and are expected to be commercially available around 2020. According to urban designer and futurist Michael E. Arth, driverless electric vehicles?in conjunction with the increased use of virtual reality for work, travel, and pleasure?could reduce the world's 800 million vehicles to a fraction of that number within a few decades.59 This would be possible if almost all private cars requiring drivers, which are not in use and parked 90% of the time, would be traded for public self-driving taxis that would be in near constant use. This would also allow for getting the appropriate vehicle for the particular need?a bus could come for a group of people, a limousine could come for a special night out, and a Segway could come for a short trip down the street for one person. Children could be chauffeured in supervised safety, DUIs would no longer exist, and 41,000 lives could be saved each year in the US alone.6061

Źródło: https://en.wikipedia.org/wiki/Autonomous_car


Autonomous car vs automated

Autonomous means having the power for self-governance.8 Many historical projects related to vehicle autonomy have in fact only been automated (made to be automatic) due to a heavy reliance on artificial hints in their environment, such as magnetic strips. Autonomous control implies good performance under significant uncertainties in the environment for extended periods of time and the ability to compensate for system failures without external intervention.8 As can be seen from many projects mentioned, it is often suggested to extend the capabilities of an autonomous car by implementing communication networks both in the immediate vicinity (for collision avoidance) and far away (for congestion management). By bringing in these outside influences in the decision process, some would no longer regard the car's behaviour or capabilities as autonomous; for example Wood et al. (2012) writes "This Article generally uses the term "autonomous," instead of the term "automated." The term "autonomous" was chosen because it is the term that is currently in more widespread use (and thus is more familiar to the general public). However, the latter term is arguably more accurate. "Automated" connotes control or operation by a machine, while "autonomous" connotes acting alone or independently. Most of the vehicle concepts (that we are currently aware of) have a person in the driver?s seat, utilize a communication connection to the Cloud or other vehicles, and do not independently select either destinations or routes for reaching them. Thus, the term "automated" would more accurately describe these vehicle concepts".9


Źródło: https://en.wikipedia.org/wiki/Autonomous_car